Dr. S. R. Lasker Library Online Catalogue

Home      Library Home      Institutional Repository      E-Resources      MyAthens      EWU Home

Basic econometrics / (Record no. 310)

MARC details
000 -LEADER
fixed length control field 11225cam a2200385 a 4500
001 - CONTROL NUMBER
control field 310
003 - CONTROL NUMBER IDENTIFIER
control field BD-DhEWU
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20140302104722.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 940825s1995 nyua g b 001 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 0070252149 (alk. paper)
International Standard Book Number 9780070252141
International Standard Book Number 007113963X (alk. paper : International ed.)
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)31075018
040 ## - CATALOGING SOURCE
Original cataloging agency DLC
Transcribing agency DLC
Modifying agency DLC
-- BD-DhEWU
Language of cataloging eng
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title eng
050 00 - LIBRARY OF CONGRESS CALL NUMBER
Classification number HB139
Item number .G84 1995
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 330.015195
Edition number 20
Item number GUB 1995
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Gujarati, Damodar N.
9 (RLIN) 2735
245 10 - TITLE STATEMENT
Title Basic econometrics /
Statement of responsibility, etc Damodar N. Gujarati.
250 ## - EDITION STATEMENT
Edition statement 3rd ed.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc New York :
Name of publisher, distributor, etc McGraw-Hill,
Date of publication, distribution, etc c1995.
300 ## - PHYSICAL DESCRIPTION
Extent xxiii, 838 p. :
Other physical details ill. ;
Dimensions 25 cm.
500 ## - GENERAL NOTE
General note "International edition"-- Verso of t.p.
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc Includes bibliographical references (p. 824-826) and indexes.
505 ## - FORMATTED CONTENTS NOTE
Title TOC
Formatted contents note Part 1 Single-Equation Regression Models --<br/>1 The Nature of Regression Analysis 15 --<br/>1.1 Historical Origin of the Term "Regression" 15 --<br/>1.2 The Modern Interpretation of Regression 16 --<br/>Examples 16 --<br/>1.3 Statistical vs. Deterministic Relationships 19 --<br/>1.4 Regression vs. Causation 20 --<br/>1.5 Regression vs. Correlation 21 --<br/>1.6 Terminology and Notation 22 --<br/>1.7 The Nature and Sources of Data for Econometric Analysis 23 --<br/>Types of Data 23 --<br/>The Sources of Data 24 --<br/>The Accuracy of Data 26 --<br/>Exercises 28 --<br/>Appendix 1A 29 --<br/>1A.1 Sources of Economic Data 29 --<br/>1A.2 Sources of Financial Data 31 --<br/>2 Two-Variable Regression Analysis: Some Basic Ideas 32 --<br/>2.1 A Hypothetical Example 32 --<br/>2.2 The Concept of Population Regression Function (PRF) 36 --<br/>2.3 The Meaning of the Term "Linear" 36 --<br/>Linearity in the Variables 37 --<br/>Linearity in the Parameters 37 --<br/>2.4 Stochastic Specification of PRF 38 --<br/>2.5 The Significance of the Stochastic Disturbance Term 39 --<br/>2.6 The Sample Regression Function (SRF) 41 --<br/>Exercises 45 --<br/>3 Two-Variable Regression Model: The Problem of Estimation 52 --<br/>3.1 The Method of Ordinary Least Squares 52 --<br/>3.2 The Classical Linear Regression Model: The Assumptions Underlying the Method of Least Squares 59 --<br/>How Realistic Are These Assumptions? 68 --<br/>3.3 Precision or Standard Errors of Least-Squares Estimates 69 --<br/>3.4 Properties of Least-Squares Estimators: The Gauss-Markov Theorem 72 --<br/>3.5 The Coefficient of Determination r2: A Measure of "Goodness of Fit" 74 --<br/>3.6 A Numerical Example 80 --<br/>3.7 Illustrative Examples 83 --<br/>Coffee Consumption in the United States, 1970-1980 83 --<br/>Keynesian Consumption Function for the United States, 1980-1991 84 --<br/>3.8 Computer Output for the Coffee Demand Function 85 --<br/>3.9 A Note on Monte Carlo Experiments 85 --<br/>Exercises 87 --<br/>Problems 89 --<br/>Appendix 3A 94 --<br/>3A.1 Derivation of Least-Squares Estimates 94 --<br/>3A.2 Linearity and Unbiasedness Properties of Least-Squares Estimators 94 --<br/>3A.3 Variances and Standard Errors of Least-Squares Estimators 95 --<br/>3A.4 Covariance between B1 and B2 96 --<br/>3A.5 The Least-Squares Estimator of o2 96 --<br/>3A.6 Minimum-Variance Property of Least-Squares Estimators 97 --<br/>3A.7 SAS Output of the Coffee Demand Function (3.7.1) 99 --<br/>4 The Normality Assumption: Classical Normal Linear Regression Model (CNLRM) 101 --<br/>4.1 The Probability Distribution of Disturbances ui 101 --<br/>4.2 The Normality Assumption 102 --<br/>4.3 Properties of OLS Estimators under the Normality Assumption 104 --<br/>4.4 The Method of Maximum Likelihood (ML) 107 --<br/>4.5 Probability Distributions Related to the Normal Distribution: The t, Chi-square (X2), and F Distributions 107 --<br/>Appendix 4A 110 --<br/>Maximum Likelihood Estimation of Two-Variable Regression Model 110 --<br/>Maximum Likelihood Estimation of the Consumption-Income Example 113 --<br/>Appendix 4A Exercises 113 --<br/>5 Two-Variable Regression: Interval Estimation and Hypothesis Testing 115 --<br/>5.1 Statistical Prerequisites 115 --<br/>5.2 Interval Estimation: Some Basic Ideas 116 --<br/>5.3 Confidence Intervals for Regression Coefficients B1 and B2 117 --<br/>Confidence Interval for B2 117 --<br/>Confidence Interval for B1 119 --<br/>Confidence Interval for B1 and B2 Simultaneously 120 --<br/>5.4 Confidence Interval for o2 120 --<br/>5.5 Hypothesis Testing: General Comments 121 --<br/>5.6 Hypothesis Testing: The Confidence-Interval Approach 122 --<br/>Two-Sided or Two-Tail Test 122 --<br/>One-Sided or One-Tail Test 124 --<br/>5.7 Hypothesis Testing: The Test-of-Significance Approach 124 --<br/>Testing the Significance of Regression Coefficients: The t-Test 124 --<br/>Testing the Significance of o2: the X2 Test 128 --<br/>5.8 Hypothesis Testing: Some Practical Aspects 129 --<br/>The Meaning of "Accepting" or "Rejecting" a Hypothesis 129 --<br/>The "Zero" Null Hypothesis and the "2-t" Rule of Thumb 129 --<br/>Forming the Null and Alternative Hypotheses 130 --<br/>Choosing a, the Level of Significance 131 --<br/>The Exact Level of Significance: The p Value 132 --<br/>Statistical Significance versus Practical Significance 133 --<br/>The Choice between Confidence-Interval and Test-of-Significance Approaches to Hypothesis Testing 134 --<br/>5.9 Regression Analysis and Analysis of Variance 134 --<br/>5.10 Application of Regression Analysis: The Problem of Prediction 137 --<br/>Mean Prediction 137 --<br/>Individual Prediction 138 --<br/>5.11 Reporting the Results of Regression Analysis 140 --<br/>5.12 Evaluating the Results of Regression Analysis 140 --<br/>Normality Test 141 --<br/>Other Tests of Model Adequacy 144 --<br/>Exercises 145 --<br/>Problems 147 --<br/>Appendix 5A 152 --<br/>5A.1 Derivation of Equation (5.3.2) 152 --<br/>5A.2 Derivation of Equation (5.9.1) 152 --<br/>5A.3 Derivation of Equations (5.10.2) and (5.10.6) 153 --<br/>Variance of Mean Prediction 153 --<br/>Variance of Individual Prediction 153 --<br/>6 Extensions of the Two-Variable Linear Regression Model 155 --<br/>6.1 Regression through the Origin 155 --<br/>r2 for Regression-through-Origin Model An Illustrative Example: The Characteristic Line of Portfolio Theory 159 --<br/>6.2 Scaling and Units of Measurement 161 --<br/>A Numerical Example: The Relationship between GPDI and GNP, United States, 1974-1983 163 --<br/>A Word about Interpretation 164 --<br/>6.3 Functional Forms of Regression Models 165 --<br/>6.4 How to Measure Elasticity: The Log-Linear Model 165 --<br/>An Illustrative Example: The Coffee Demand Function Revisited 167 --<br/>6.5 Semilog Models: Log-Lin and Lin-Log Models 169 --<br/>How to Measure the Growth Rate: The Log-Lin Model 169 --<br/>The Lin-Log Model 172 --<br/>6.6 Reciprocal Models 173 --<br/>An Illustrative Example: The Phillips Curve for the United Kingdom, 1950-1966 176 --<br/>6.7 Summary of Functional Forms 176 --<br/>6.8 A Note on the Nature of the Stochastic Error Term: Additive versus Multiplicative Stochastic Error Term 178 --<br/>Exercises 180 --<br/>Problems 183 --<br/>Appendix 6A 186 --<br/>6A.1 Derivation of Least-Squares Estimators for Regression through the Origin 186 --<br/>6A.2 SAS Output of the Characteristic Line (6.1.12) 189 --<br/>6A.3 SAS Output of the United Kingdom Phillips Curve Regression (6.6.2) 190 --<br/>7 Multiple Regression Analysis: The Problem of Estimation 191 --<br/>7.1 The Three-Variable Model: Notation and Assumptions 192 --<br/>7.2 Interpretation of Multiple Regression Equation 194 --<br/>7.3 The Meaning of Partial Regression Coefficients 195 --<br/>7.4 OLS and ML Estimation of the Partial Regression Coefficients 197 --<br/>OLS Estimators 197 --<br/>Variances and Standard Errors of OLS Estimators 198 --<br/>Properties of OLS Estimators 199 --<br/>Maximum Likelihood Estimators 201 --<br/>7.5 The Multiple Coefficient of Determination R2 and the Multiple Coefficient of Correlation R 201 --<br/>7.6 Example 7.1: The Expectations-Augmented Phillips Curve for the United States, 1970-1982 203 --<br/>7.7 Simple Regression in the Context of Multiple Regression: Introduction to Specification Bias 204 --<br/>7.8 R2 and the Adjusted R2 207 --<br/>Comparing Two R2 Values 209 --<br/>Example 7.2: Coffee Demand Function Revisited 210 --<br/>The "Game" of Maximizing R2 211 --<br/>7.9 Partial Correlation Coefficients 211 --<br/>Explanation of Simple and Partial Correlation Coefficients 211 --<br/>Interpretation of Simple and Partial Correlation Coefficients 213 --<br/>7.10 Example 7.3: The Cobb-Douglas Production Function: More on Functional Form 214 --<br/>7.11 Polynomial Regression Models 217 --<br/>Example 7.4: Estimating the Total Cost Function 218 --<br/>Empirical Results 220 --<br/>Exercises 221 --<br/>Problems 224 --<br/>Appendix 7A 231 --<br/>7A.1 Derivation of OLS Estimators Given in Equations (7.4.3) and (7.4.5) 231 --<br/>7A.2 Equality between a1 of (7.3.5) and B2 of (7.4.7) 232 --<br/>7A.3 Derivation of Equation (7.4.19) 232 --<br/>7A.4 Maximum Likelihood Estimation of the Multiple Regression Model 233 --<br/>7A.5 The Proof that E(b12) = B2 + B3b32 (Equation 7.7.4) 234 --<br/>7A.6 SAS Output of the Expectations-Augmented Phillips Curve (7.6.2) 236 --<br/>7A.7 SAS Output of the Cobb-Douglas Production Function (7.10.4) 237 --<br/>8 Multiple Regression Analysis: The Problem of Inference 238 --<br/>8.1 The Normality Assumption Once Again 238 --<br/>8.2 Example 8.1: U.S. Personal Consumption and Personal Disposal Income Relation, 1956-1970 239 --<br/>8.3 Hypothesis Testing in Multiple Regression: General Comments 242 --<br/>8.4 Hypothesis Testing about Individual Partial Regression Coefficients 242 --<br/>8.5 Testing the Overall Significance of the Sample Regression 244 --<br/>The Analysis of Variance Approach to Testing the Overall Significance of an Observed Multiple Regression: The F Test 245 --<br/>An Important Relationship between R2 and F 248 --<br/>The "Incremental," or "Marginal," Contribution of an Explanatory Variable 250 --<br/>8.6 Testing the Equality of Two Regression Coefficients 254 --<br/>Example 8.2: The Cubic Cost Function Revisited 255 --<br/>8.7 Restricted Least Squares: Testing Linear Equality Restrictions 256 --<br/>The t Test Approach 256 --<br/>The F Test Approach: Restricted Least Squares 257 --<br/>Example 8.3: The Cobb-Douglas Production Function for Taiwanese Agricultural Sector, 1958-1972 259 --<br/>General F Testing 260 --<br/>8.8 Comparing Two Regressions: Testing for Structural Stability of Regression Models 262 --<br/>8.9 Testing the Functional Form of Regression: Choosing between Linear and Log-Linear Regression Models 265 --<br/>Example 8.5: The Demand for Roses 266 --<br/>8.10 Prediction with Multiple Regression 267 --<br/>8.11 The Troika of Hypothesis Tests: The Likelihood Ratio (LR), Wald (W), and Lagrange Multiplier (LM) Tests 268 --<br/>The Road Ahead 269 --<br/>Exercises 270 --<br/>Problems 273 --<br/>Appendix 8A 280 --<br/>Likelihood Ratio (LR) Test 280 --<br/>9 The Matrix Approach to Linear Regression Model 282
520 ## - SUMMARY, ETC.
Summary, etc An introduction to econometrics which discusses techniques and topics suitable for a first-year undergraduate course. The text assumes a statistics course as a prerequisite and contains an appendix on fundamental statistics.
526 ## - STUDY PROGRAM INFORMATION NOTE
Program name Economics
590 ## - LOCAL NOTE (RLIN)
Local note Sagar Shahanawaz
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Econometrics.
9 (RLIN) 76
856 42 - ELECTRONIC LOCATION AND ACCESS
Materials specified Publisher description
Uniform Resource Identifier http://www.loc.gov/catdir/enhancements/fy0602/94035295-d.html
Materials specified Table of contents only
Uniform Resource Identifier http://www.loc.gov/catdir/enhancements/fy0602/94035295-t.html
Materials specified WorldCat details
Uniform Resource Identifier http://www.worldcat.org/title/basic-econometrics/oclc/31075018&referer=brief_results
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Text
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Total Checkouts Full call number Barcode Date last seen Date checked out Copy number Koha item type
    Dewey Decimal Classification   Not For Loan Non-fiction Dr. S. R. Lasker Library, EWU Dr. S. R. Lasker Library, EWU Reserve Section 11/05/1997 Other 306.00 2 330.015195 GUB 1995 790 30/01/2014 28/01/2014 C-1 Text