Statistical modelling in R / Murray Aitkin ... [et al.].
Material type:
Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|---|
![]() |
EWU Library Reserve Section | Non-fiction | 519.502855133 STA 2009 (Browse shelf(Opens below)) | C-1 | Not For Loan | 27306 | ||
![]() |
EWU Library Circulation Section | Non-fiction | 519.502855133 STA 2009 (Browse shelf(Opens below)) | C-2 | Available | 27307 |
Browsing EWU Library shelves, Shelving location: Reserve Section Close shelf browser (Hides shelf browser)
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
519.502855133 CRS 2015 Statistics : | 519.502855133 HOH 2014 A handbook of statistical analyses using R / | 519.502855133 HOH 2014 A handbook of statistical analyses using R / | 519.502855133 STA 2009 Statistical modelling in R / | 519.5028553 ONE 2014 One hundred nineteen stata tips / | 519.50285536 BEI 2013 Introduction to time series using Stata / | 519.50285536 HEH 2007 A handbook of statistical analyses using Stata / |
Includes bibliographical references (p. [554]-565) and indexes.
TOC INTRODUCING R: Statistical packages and statistical modelling --
Getting started in R --
Reading data into R --
Assignment and data generation --
Displaying data --
Data structures and the workspace --
Transformations and data modification --
Functions and suffixing --
Structure functions --
Mathematical functions --
Logical operators --
Control functions --
Statistical functions --
Random numbers --
Suffixes in expressions --
Extracting subsets of data --
Recoding variates and factors into new factors --
Graphical facilities --
Text functions --
Writing your own functions --
Sorting and tabulation --
Editing R code --
Installing and using packages --
STATISTICAL MODELLING AND INFERERENCE: Statistical models --
Types of variables --
Population models --
Random sampling --
The likelihood function --
Inference for single parameter models --
Comparing two simple hypotheses --
Information about a single parameter --
Comparing a simple null hypothesis and a composite alternative --
Inference with nuisance parameters --
Profile likelihoods --
Marginal likelihood for the variance --
Likelihood normalizing transformations --
Alternative test procedures --
Bayes inference --
Binomial model --
Hypergeometric sampling from finite populations --
The effect of the sample design on inference --
The exponential family --
Mean and variance --
Generalized linear models --
Maximum likelihood fitting of the GLM --
Model comparisons through maximized likelihoods --
Likelihood inference without models --
Likelihoods for percentiles --
Empirical likelihood. REGRESSION AND ANALYSIS OF VARIANCE: An example --
Strategies for model simplification --
Stratified, weighted and clustered samples --
Model criticism --
Mis-specification of the probability distribution --
Mis-specification of the link function --
The occurrence of aberrant and influential observations --
Mis-specification of the systematic part of the model --
The Box-Cox transformation family --
Modelling and background information --
Link functions and transformations --
Regression models for prediction --
Model choice and mean square prediction error --
Model selection through cross-validation --
Reduction of complex regression models --
Sensitivity of the Box-Cox transformation --
The use of regression models for calibration --
Measurement error in the explanatory variables --
Factorial designs --
Unbalanced cross-classifications --
The Bennett hostility data --
ANOVA of the cross-classification --
Regression analysis of the cross-classification --
Statistical package treatments of cross-classifications --
Missing data --
Approximate methods for missing data --
Modelling of variance heterogeneity --
Poison example --
Tree example. BINARY RESPONSE DATA: Binary responses --
Transformations and link functions --
Profile likelihoods for functions of parameters --
Model criticism --
Mis-specification of the probability distribution --
Mis-specification of the link function --
The occurrence of aberrant and influential observations --
Binary data with continuous covariates --
Contingency table construction from binary data --
The prediction of binary outcomes --
Profile and conditional likelihoods in 2 x 2 tables --
Three-dimensional contingency tables with a binary response --
Prenatal care and infant mortality --
Coronary heart disease --
Multidimensional contingency tables with a binary response --
MULTINOMIAL AND POISSON RESPONSE DATA: The Poisson distribution --
Cross-classified counts --
Multicategory responses --
Multinomial logit model --
The Poisson-multinomial relation --
Fitting the multinomial logit model --
Ordered response categories --
Common slopes for the regressions --
Linear trend over response categories --
Proportional slopes --
The continuation ratio model --
Other models --
An Example --
Multinomial logit model --
Continuation ratio model --
Structured multinomial responses --
Independent outcomes --
Correlated outcomes. SURVIVAL DATA: Introduction --
The exponential distribution --
Fitting the exponential distribution --
Model criticism --
Comparison with the normal family --
Censoring --
Likelihood function for censored observations --
Probability plotting with censored data: the Kaplan-Meier estimator --
The gamma distribution --
Maximum likelihood with uncensored data --
Maximum likelihood with censored data --
Double modelling --
The Weibull distribution --
Maximum likelihood fitting of the Weibull distribution --
The extreme value distribution --
The reversed extreme value distribution --
Survivor function plotting for the Weibull and extreme value distributions --
The Cox proportional hazards model and the piecewise exponential distribution --
Maximum likelihood fitting of the piecewise exponential distribution --
Examples --
The logistic and log-logistic distributions --
The normal and lognormal distributions --
Evaluating the proportional hazard assumption --
Competing risks --
Time-dependent explanatory variables --
Discrete time models --
FINITE MIXTURE MODELS: Introduction --
Example --
girl birthweights --
Finite mixtures of distributions --
Maximum likelihood in finite mixtures --
Standard errors --
Testing for the number of components --
Example --
Likelihood 'spikes' --
Galaxy data --
Kernel density estimates. RANDOM EFFECT MODELS : Overdispersion --
Testing for overdispersion --
Conjugate random effects --
Normal kernel: the t-distribution --
Poisson kernel: the negative binomial distribution --
Binomial kernel: beta-binomial distribution --
Gamma kernel --
Difficulties with the conjugate approach --
Normal random effects --
Predicting from the normal random effect model --
Gaussian quadrature examples --
Overdispersion model fitting --
Poisson --
the fabric fault data --
Binomial --
the toxoplasmosis data --
Other specified random effect distributions --
Arbitrary random effects --
Examples --
The fabric fault data --
The toxoplasmosis data --
Leukaemia remission data --
The Brownlee stack-loss data --
Random coefficient regression models --
Example --
the fabric fault data --
Algorithms for mixture fitting --
The trypanosome data --
Modelling the mixing probabilities --
Mixtures of mixtures --
VARIANCE COMPONENT MODELS: Models with shared random effects --
The normal/normal model --
Exponential family two-level models --
Other approaches --
NPML estimation of the masses and mass-points --
Random coefficient models --
Variance component model fitting --
Children's height development --
Multi-centre trial of beta-blockers --
Longitudinal study of obesity --
Autoregressive random effect models --
Latent variable models --
The normal factor model --
IRT models --
The Rasch model --
The two-parameter model --
The three-parameter logit (3PL) model --
Example --
The Law School Aptitude Test (LSAT) --
Spatial dependence --
Multivariate correlated responses --
Discreteness of the NPML estimate.
"R is now the most widely used statistical package/language in university statistics departments and many research organisations. Its great advantages are that it is now the leading-edge statistical package/language and that it can be freely downloaded from the R website. Its cooperative development and open code also attract many contributors which means that the modelling and data analysis possibilities in R are
AS
Sagar Shahanawaz
There are no comments on this title.