Cover image
Normal view MARC view ISBD view

Econometric analysis of count data /

by Winkelmann, Rainer.
Material type: materialTypeLabelBookPublisher: Berlin : Springer, 2008Edition: 5th ed.Description: xiv, 333 p. : ill. ; 25 cm.ISBN: 9783540776482 (hbk. : alk. paper); 3540776486.Subject(s): Econometrics | Time-series analysis | Labor mobility -- Econometric modelsOnline resources: WorldCat details | E-Book Fulltext
Contents:
Table of contents Cover -- Preface -- Contents -- 1 Introduction -- 1.1 Poisson Regression Model -- 1.2 Examples -- 1.3 Organization of the Book -- 2 Probability Models for Count Data -- 2.1 Introduction -- 2.2 Poisson Distribution -- 2.2.1 Definitions and Properties -- 2.2.2 Genesis of the Poisson Distribution -- 2.2.3 Poisson Process -- 2.2.4 Generalizations of the Poisson Process -- 2.2.5 Poisson Distribution as a Binomial Limit -- 2.2.6 Exponential Interarrival Times -- 2.2.7 Non-Poissonness -- 2.3 Further Distributions for Count Data -- 2.3.1 Negative Binomial Distribution -- 2.3.2 Binomial Distribution -- 2.3.3 Logarithmic Distribution -- 2.3.4 Summary -- 2.4 Modified Count Data Distributions -- 2.4.1 Truncation -- 2.4.2 Censoring and Grouping -- 2.4.3 Altered Distributions -- 2.5 Generalizations -- 2.5.1 Mixture Distributions -- 2.5.2 Compound Distributions -- 2.5.3 Birth Process Generalizations -- 2.5.4 Katz Family of Distributions -- 2.5.5 Additive Log-Differenced Probability Models -- 2.5.6 Linear Exponential Families -- 2.5.7 Summary -- 2.6 Distributions for Over- and Underdispersion -- 2.6.1 Generalized Event Count Model -- 2.6.2 Generalized Poisson Distribution -- 2.6.3 Poisson Polynomial Distribution -- 2.6.4 Double Poisson Distribution -- 2.6.5 Summary -- 2.7 Duration Analysis and Count Data -- 2.7.1 Distributions for Interarrival Times -- 2.7.2 Renewal Processes -- 2.7.3 Gamma Count Distribution -- 2.7.4 Duration Mixture Models -- 3 Poisson Regression -- 3.1 Specification -- 3.1.1 Introduction -- 3.1.2 Assumptions of the Poisson Regression Model -- 3.1.3 Ordinary Least Squares and Other Alternatives -- 3.1.4 Interpretation of Parameters -- 3.1.5 Period at Risk -- 3.2 Maximum Likelihood Estimation -- 3.2.1 Introduction -- 3.2.2 Likelihood Function and Maximization -- 3.2.3 Newton-Raphson Algorithm -- 3.2.4 Properties of the Maximum Likelihood Estimator -- 3.2.5 Estimation of the Variance Matrix -- 3.2.6 Approximate Distribution of the Poisson Regression Coefficients -- 3.2.7 Bias Reduction Techniques -- 3.3 Pseudo-Maximum Likelihood -- 3.3.1 Linear Exponential Families -- 3.3.2 Biased Poisson Maximum Likelihood Inference -- 3.3.3 Robust Poisson Regression -- 3.3.4 Non-Parametric Variance Estimation -- 3.3.5 Poisson Regression and Log-Linear Models -- 3.3.6 Generalized Method of Moments -- 3.4 Sources of Misspecification -- 3.4.1 Mean Function -- 3.4.2 Unobserved Heterogeneity -- 3.4.3 Measurement Error -- 3.4.4 Dependent Process -- 3.4.5 Selectivity -- 3.4.6 Simultaneity and Endogeneity -- 3.4.7 Underreporting -- 3.4.8 Excess Zeros -- 3.4.9 Variance Function -- 3.5 Testing for Misspecification -- 3.5.1 Classical Specification Tests -- 3.5.2 Regression Based Tests -- 3.5.3 Goodness-of-Fit Tests --T.
Summary: Surveys statistical and econometric techniques for the analysis of count data, with a focus on conditional distribution models. This book presents Poisson regression model. It discusses testing and estimation from frequentist and Bayesian perspectives.
Tags from this library:
No tags from this library for this title.
Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Location Collection Call number Copy number Status Date due
E-Book E-Book E-book Non Fiction 330 WIE 2008 (Browse shelf) Not for loan
Text Text Reserve Section Non Fiction 330 WIE 2008 (Browse shelf) Not For Loan
Text Text Circulation Section Non Fiction 330 WIE 2008 (Browse shelf) C-2 Available

Includes bibliographical references (p. [299]-319) and indexes.

Table of contents Cover --
Preface --
Contents --
1 Introduction --
1.1 Poisson Regression Model --
1.2 Examples --
1.3 Organization of the Book --
2 Probability Models for Count Data --
2.1 Introduction --
2.2 Poisson Distribution --
2.2.1 Definitions and Properties --
2.2.2 Genesis of the Poisson Distribution --
2.2.3 Poisson Process --
2.2.4 Generalizations of the Poisson Process --
2.2.5 Poisson Distribution as a Binomial Limit --
2.2.6 Exponential Interarrival Times --
2.2.7 Non-Poissonness --
2.3 Further Distributions for Count Data --
2.3.1 Negative Binomial Distribution --
2.3.2 Binomial Distribution --
2.3.3 Logarithmic Distribution --
2.3.4 Summary --
2.4 Modified Count Data Distributions --
2.4.1 Truncation --
2.4.2 Censoring and Grouping --
2.4.3 Altered Distributions --
2.5 Generalizations --
2.5.1 Mixture Distributions --
2.5.2 Compound Distributions --
2.5.3 Birth Process Generalizations --
2.5.4 Katz Family of Distributions --
2.5.5 Additive Log-Differenced Probability Models --
2.5.6 Linear Exponential Families --
2.5.7 Summary --
2.6 Distributions for Over- and Underdispersion --
2.6.1 Generalized Event Count Model --
2.6.2 Generalized Poisson Distribution --
2.6.3 Poisson Polynomial Distribution --
2.6.4 Double Poisson Distribution --
2.6.5 Summary --
2.7 Duration Analysis and Count Data --
2.7.1 Distributions for Interarrival Times --
2.7.2 Renewal Processes --
2.7.3 Gamma Count Distribution --
2.7.4 Duration Mixture Models --
3 Poisson Regression --
3.1 Specification --
3.1.1 Introduction --
3.1.2 Assumptions of the Poisson Regression Model --
3.1.3 Ordinary Least Squares and Other Alternatives --
3.1.4 Interpretation of Parameters --
3.1.5 Period at Risk --
3.2 Maximum Likelihood Estimation --
3.2.1 Introduction --
3.2.2 Likelihood Function and Maximization --
3.2.3 Newton-Raphson Algorithm --
3.2.4 Properties of the Maximum Likelihood Estimator --
3.2.5 Estimation of the Variance Matrix --
3.2.6 Approximate Distribution of the Poisson Regression Coefficients --
3.2.7 Bias Reduction Techniques --
3.3 Pseudo-Maximum Likelihood --
3.3.1 Linear Exponential Families --
3.3.2 Biased Poisson Maximum Likelihood Inference --
3.3.3 Robust Poisson Regression --
3.3.4 Non-Parametric Variance Estimation --
3.3.5 Poisson Regression and Log-Linear Models --
3.3.6 Generalized Method of Moments --
3.4 Sources of Misspecification --
3.4.1 Mean Function --
3.4.2 Unobserved Heterogeneity --
3.4.3 Measurement Error --
3.4.4 Dependent Process --
3.4.5 Selectivity --
3.4.6 Simultaneity and Endogeneity --
3.4.7 Underreporting --
3.4.8 Excess Zeros --
3.4.9 Variance Function --
3.5 Testing for Misspecification --
3.5.1 Classical Specification Tests --
3.5.2 Regression Based Tests --
3.5.3 Goodness-of-Fit Tests --T.

Surveys statistical and econometric techniques for the analysis of count data, with a focus on conditional distribution models. This book presents Poisson regression model. It discusses testing and estimation from frequentist and Bayesian perspectives.

Applied Statistics

Sagar Shahanawaz

There are no comments for this item.

Log in to your account to post a comment.

Library Home | Contacts | E-journals

Last Update on 12 January 2014
Copyright @ 2011-2015 EWU Library
East West University