Nanoscale transistors : device physics, modeling and simulation / Mark S. Lundstrom, Jing Guo.

By: Lundstrom, Mark
Contributor(s): Guo, Jing, 1977-
Material type: TextTextLanguage: English Publisher: New York : Springer, c2006Description: vi, 217 p. : ill. ; 24 cmISBN: 0387280022; 9780387280028Subject(s): Nanotechnology | Metal oxide semiconductor field-effect transistors -- Mathematical models | Nanostructured materials -- Mathematical modelsDDC classification: 621.381528 LOC classification: T174.7 | .L86 2006Online resources: Table of contents only | Publisher description | Contributor biographical information | WorldCat details | Ebook Fulltext
Contents:
Table of contents 1.2 Distribution functions 1 -- 1.3 3D, 2D, and 1D Carriers 3 -- 1.4 Density of states 7 -- 1.5 Carrier densities 8 -- 1.6 Directed moments 10 -- 1.7 Ballistic transport: semiclassical 12 -- 1.8 Ballistic transport: quantum 16 -- 1.9 The NEGF formalism 21 -- 1.10 Scattering 25 -- 1.11 Conventional transport theory 26 -- 1.12 Resistance of a ballistic conductor 31 -- 1.13 Coulomb blockade 33 -- 2) Devices, Circuits and Systems 39 -- 2.2 The MOSFET 40 -- 2.3 1D MOS Electrostatics 45 -- 2.4 2D MOS Electrostatics 54 -- 2.5 MOSFET Current-Voltage Characteristics 61 -- 2.6 The bipolar transistor 67 -- 2.7 CMOS Technology 69 -- 2.8 Ultimate limits 75 -- 3) The Ballistic Nanotransistors 83 -- 3.2 Physical view of the nanoscale MOSFETs 86 -- 3.3 Natori's theory of the ballistic MOSFET 91 -- 3.4 Nondegenerate, degenerate, and general carrier statistics 94 -- 3.4.1 The ballistic MOSFET (nondegenerate conditions) 94 -- 3.4.2 The ballistic MOSFET (T[subscript L] = 0, degenerate conditions) 97 -- 3.4.3 The ballistic MOSFET (general conditions) 103 -- 3.5 Beyond the Natori model 105 -- 3.5.1 Role of the quantum capacitance 105 -- 3.5.2 Two dimensional electrostatics 108 -- 4) Scattering Theory of the MOSFET 115 -- 4.2 MOSFET physics in the presence of scattering 117 -- 4.3 The scattering model 120 -- 4.4 The transmission coefficient under low drain bias 126 -- 4.5 The transmission coefficient under high drain bias 129 -- 5) Nanowire Field-Effect Transistors 140 -- 5.2 Silicon nanowire MOSFETs 140 -- 5.2.1 Evaluation of the I-V characteristics 143 -- 5.2.2 The I-V characteristics for nondegenerate carrier statistics 143 -- 5.2.3 The I-V characteristics for degenerate carrier statistics 145 -- 5.2.4 Numerical results 147 -- 5.3 Carbon nanotubes 153 -- 5.4 Bandstructure of carbon nanotubes 155 -- 5.4.1 Bandstructure of graphene 155 -- 5.4.2 Physical structure of nanotubes 158 -- 5.4.3 Bandstructure of nanotubes 160 -- 5.4.4 Bandstructure near the Fermi points 165 -- 5.5 Carbon nanotube FETs 169 -- 5.6 Carbon nanotube MOSFETs 171 -- 5.7 Schottky barrier carbon nanotube FETs 173 -- 6) Transistors at the Molecular Scale 182 -- 6.2 Electronic conduction in molecules 183 -- 6.3 General model for ballistic nanotransistors 187 -- 6.4 MOSFETs with 0D, 1D, and 2D channels 193 -- 6.5 Molecular transistors? 196 -- 6.6 Single electron charging 199 -- 6.7 Single electron transistors 203.
Summary: "Nanoscale transistors: Device Physics, Modeling and Simulation describes the recent development of theory, modeling, and simulation of nanostransistors for electrical engineers, physicists, and chemists working with nanoscale devices. Simple physical pictures and semi-analytical models, which were validated by detailed numerical simulations, are provided for both evolutionary and revolutionary nanotransistors." "The book is a useful reference for senior-level or graduate-level courses on nanoelectronics, modeling and simulation. It is also valuable to scientists and engineers who are pushing MOSFETs to their limits and developing revolutionary nanoscale devices."--Jacket.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Copy number Status Date due Barcode Item holds
E-Book E-Book EWU Library
Digital Library
621.381528 LUN 2006 (Browse shelf) Not for loan
Text Text EWU Library
Reserve Section
Non-fiction 621.381528 LUN 2006 (Browse shelf) C-1 Not For Loan 23344
Text Text EWU Library
Circulation Section
Non-fiction 621.381528 LUN 2006 (Browse shelf) C-2 Available 23345
Text Text EWU Library
Circulation Section
Non-fiction 621.381528 LUN 2006 (Browse shelf) C-3 Checked out 21/04/2020 23346
Total holds: 0

Includes bibliographical references and index.

Table of contents 1.2 Distribution functions 1 --
1.3 3D, 2D, and 1D Carriers 3 --
1.4 Density of states 7 --
1.5 Carrier densities 8 --
1.6 Directed moments 10 --
1.7 Ballistic transport: semiclassical 12 --
1.8 Ballistic transport: quantum 16 --
1.9 The NEGF formalism 21 --
1.10 Scattering 25 --
1.11 Conventional transport theory 26 --
1.12 Resistance of a ballistic conductor 31 --
1.13 Coulomb blockade 33 --
2) Devices, Circuits and Systems 39 --
2.2 The MOSFET 40 --
2.3 1D MOS Electrostatics 45 --
2.4 2D MOS Electrostatics 54 --
2.5 MOSFET Current-Voltage Characteristics 61 --
2.6 The bipolar transistor 67 --
2.7 CMOS Technology 69 --
2.8 Ultimate limits 75 --
3) The Ballistic Nanotransistors 83 --
3.2 Physical view of the nanoscale MOSFETs 86 --
3.3 Natori's theory of the ballistic MOSFET 91 --
3.4 Nondegenerate, degenerate, and general carrier statistics 94 --
3.4.1 The ballistic MOSFET (nondegenerate conditions) 94 --
3.4.2 The ballistic MOSFET (T[subscript L] = 0, degenerate conditions) 97 --
3.4.3 The ballistic MOSFET (general conditions) 103 --
3.5 Beyond the Natori model 105 --
3.5.1 Role of the quantum capacitance 105 --
3.5.2 Two dimensional electrostatics 108 --
4) Scattering Theory of the MOSFET 115 --
4.2 MOSFET physics in the presence of scattering 117 --
4.3 The scattering model 120 --
4.4 The transmission coefficient under low drain bias 126 --
4.5 The transmission coefficient under high drain bias 129 --
5) Nanowire Field-Effect Transistors 140 --
5.2 Silicon nanowire MOSFETs 140 --
5.2.1 Evaluation of the I-V characteristics 143 --
5.2.2 The I-V characteristics for nondegenerate carrier statistics 143 --
5.2.3 The I-V characteristics for degenerate carrier statistics 145 --
5.2.4 Numerical results 147 --
5.3 Carbon nanotubes 153 --
5.4 Bandstructure of carbon nanotubes 155 --
5.4.1 Bandstructure of graphene 155 --
5.4.2 Physical structure of nanotubes 158 --
5.4.3 Bandstructure of nanotubes 160 --
5.4.4 Bandstructure near the Fermi points 165 --
5.5 Carbon nanotube FETs 169 --
5.6 Carbon nanotube MOSFETs 171 --
5.7 Schottky barrier carbon nanotube FETs 173 --
6) Transistors at the Molecular Scale 182 --
6.2 Electronic conduction in molecules 183 --
6.3 General model for ballistic nanotransistors 187 --
6.4 MOSFETs with 0D, 1D, and 2D channels 193 --
6.5 Molecular transistors? 196 --
6.6 Single electron charging 199 --
6.7 Single electron transistors 203.

"Nanoscale transistors: Device Physics, Modeling and Simulation describes the recent development of theory, modeling, and simulation of nanostransistors for electrical engineers, physicists, and chemists working with nanoscale devices. Simple physical pictures and semi-analytical models, which were validated by detailed numerical simulations, are provided for both evolutionary and revolutionary nanotransistors." "The book is a useful reference for senior-level or graduate-level courses on nanoelectronics, modeling and simulation. It is also valuable to scientists and engineers who are pushing MOSFETs to their limits and developing revolutionary nanoscale devices."--Jacket.

Electrical & Electronic Engineering

There are no comments for this item.

to post a comment.

Library Home | Contacts | E-journals
Copyright @ 2011-2019 EWU Library
East West University