Models for discrete longitudinal data / Geert Molenberghs, Geert Verbeke.
Material type: TextLanguage: English Series: Springer series in statisticsPublication details: New York ; London : Springer, c2006. Description: xxii, 683 p. : ill. 25 cmISBN: 0387251448 (hbk.); 9780387251448Subject(s): Multivariate analysis | Longitudinal methodDDC classification: 519.53 LOC classification: QA278 | .M65 2005Online resources: Publisher description | WorldCat details | Ebook FulltextItem type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|---|
E-Book | Dr. S. R. Lasker Library, EWU E-book | Non-fiction | 519.53 MOM 2006 (Browse shelf(Opens below)) | Not for loan | ||||
Text | Dr. S. R. Lasker Library, EWU Reserve Section | Non-fiction | 519.53 MOM 2006 (Browse shelf(Opens below)) | C-1 | Not For Loan | 26628 | ||
Text | Dr. S. R. Lasker Library, EWU Circulation Section | Non-fiction | 519.53 MOM 2006 (Browse shelf(Opens below)) | C-2 | Available | 26884 | ||
Text | Dr. S. R. Lasker Library, EWU Circulation Section | Non-fiction | 519.53 MOM 2006 (Browse shelf(Opens below)) | C-3 | Available | 26885 |
Browsing Dr. S. R. Lasker Library, EWU shelves, Shelving location: Reserve Section Close shelf browser (Hides shelf browser)
519.53 FIA 2011 Applied longitudinal analysis / | 519.53 GRT 1976 Theory and application of the linear model / | 519.53 LIA 1997 Applying generalized linear models / | 519.53 MOM 2006 Models for discrete longitudinal data / | 519.53 THE 2013 Essentials of Monte Carlo simulation : | 519.535 ACD 2013 Discovering structural equation modeling using Stata / | 519.535 AGC 2013 Categorical data analysis / |
Includes bibliographical references and index.
TOC Introduction --
Motivating studies --
Generalized linear models --
Linear mixed models for Gaussian longitudinal data --
Model families --
The strength of marginal models --
Likelihood-based marginal models --
Generalized estimating equations --
Pseudo-likelihood --
Fitting marginal models with SAS --
Conditional models --
Pseudo-likehood --
From subject-specific to random-effects models --
The generalized linear mixed model (GLMM) --
Fitting generalized linear mixed models with SAS --
Marginal versus random-effects models The analgesic trial --
Ordinal data --
The epilepsy data --
Non-linear models --
Pseudo-likelihood for a hierarchical model --
Random-effects models with serial correlation --
Non-Gaussian random effects --
Joint continuous and discrete responses --
High-dimensional joint models --
Missing data concepts --
Simple methods, direct likelihood, and WGEE --
Multiple imputation and the EM algorithm --
Selection models --
Pattern-mixture models --
Sensitivity analysis --
Incomplete data and SAS.
Summary:
The linear mixed model is the main parametric tool for the analysis of continuous longitudinal data. This book shows how the different approaches can be implemented within the SAS software package.
AS
Saifun Momota
There are no comments on this title.