An introduction to applied multivariate analysis with R / Brian Everitt, Torsten Hothorn.
Material type:
Item type | Current library | Collection | Call number | Copy number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|---|
![]() |
Dr. S. R. Lasker Library, EWU E-book | Non-fiction | 519.535 EVI 2011 (Browse shelf(Opens below)) | Not for loan | ||||
![]() |
Dr. S. R. Lasker Library, EWU Reserve Section | Non-fiction | 519.535 EVI 2011 (Browse shelf(Opens below)) | C-1 | Not For Loan | 26674 |
Browsing Dr. S. R. Lasker Library, EWU shelves, Shelving location: E-book Close shelf browser (Hides shelf browser)
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
519.53 THE 2013 Essentials of Monte Carlo simulation : | 519.535 AGC 2013 Categorical data analysis / | 519.535 DES 2012 Design and analysis of experiments. | 519.535 EVI 2011 An introduction to applied multivariate analysis with R / | 519.535 FIA 2007 The analysis of cross-classified categorical data / | 519.535 HAM 2015 Multivariate statistics : | 519.535 IZM 2008 Modern multivariate statistical techniques : |
Includes bibliographical references (p. 259-269) and index.
TOC Multivariate data and multivariate analysis -- Looking at multivariate data: visualisation -- Principal components analysis -- Multidimensional scaling -- Exploratory factor analysis -- Cluster analysis -- Confirmatory factor analysis and structural equation models -- The analysis of repeated measures data.
"The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data."--Publisher's description.
AS
Tahur Ahmed
There are no comments on this title.