Normal view MARC view ISBD view

Magnetics, dielectrics, and wave propagation with MATLAB codes / Carmine Vittoria.

By: Vittoria, C.
Material type: TextTextPublisher: Boca Raton : CRC Press, c2011Description: xvii, 450 p., [4] p. of plates : ill. (some col.) ; 25 cm.ISBN: 9781439841990; 1439841993.Subject(s): Magnetics -- Mathematics | Dielectrics -- Mathematics | Radio wave propagation -- Mathematics | Electromagnetic waves -- Mathematical modelsDDC classification: 621.34 Online resources: Contributor biographical information | WorldCat details | E-book Fulltext
Contents:
Table of contents 1. Review of Maxwell Equations and Units -- Maxwell Equations in MKS System of Units -- Major and Minor Magnetic Hysteresis Loops -- Tensor and Dyadic Quantities -- Maxwell Equations in Gaussian System of Units -- External, Surface, and Internal Electromagnetic Fields -- Problems -- Appendix 1.A. Conversion of Units -- References -- Solutions -- 2. Classical Principles of Magnetism -- Historical Background -- First Observation of Magnetic Resonance -- Definition of Magnetic Dipole Moment -- Magnetostatics of Magnetized Bodies -- Electrostatics of Electric Dipole Moment -- Relationship between B and H Fields -- General Definition of Magnetic Moment -- Classical Motion of the Magnetic Moment -- Problems -- Appendix 2.A -- References -- Solutions -- 3. Introduction to Magnetism -- Energy Levels and Wave Functions of Atoms -- Spin Motion -- Intra-Exchange Interactions -- Heisenberg Representation of Exchange Coupling -- Multiplet States -- Hund Rules -- Spin-Orbit Interaction -- Lande gj-Factor -- Effects of Magnetic Field on a Free Atom -- Crystal Field Effects on Magnetic Ions -- Superexchange Coupling between Magnetic Ions -- Double Superexchange Coupling -- Ferromagnetism in Magnetic Metals -- Problems -- Appendix 3.A. Matrix Representation of Quantum Mechanics -- References -- Solutions -- 4. Free Magnetic Energy -- Thermodynamics of Noninteracting Spins: Paramagnets -- Ferromagnetic Interaction in Solids -- Ferrimagnetic Ordering -- Spinwave Energy -- Effects of Thermal Spinwave Excitations -- Free Magnetic Energy -- Single Ion Model for Magnetic Anisotropy -- Pair Model -- Demagnetizing Field Contribution to Free Energy -- Numerical Examples -- Cubic Magnetic Anisotropy Energy -- Uniaxial Magnetic Anisotropy Energy -- Problems -- References -- Solutions -- 5. Phenomenological Theory -- Smit and Beljers Formulation -- Examples of Ferromagnetic Resonance -- Simple Model for Hysteresis -- General Formulation -- Connection between Free Energy and Internal Fields -- Static Field Equations -- Dynamic Equations of Motion -- Microwave Permeability -- Normal Modes -- Magnetic Relaxation -- Free Energy of Multi-Domains -- Problems -- References -- Solutions -- 6. Electrical Properties of Magneto-Dielectric Films -- Basic Difference between Electric and Magnetic Dipole Moments -- Electric Dipole Orientation in a Field -- Equation of Motion of Electrical Dipole Moment in a Solid -- Free Energy of Electrical Materials -- Magneto-Elastic Coupling -- Microwave Properties of Perfect Conductors -- Principles of Superconductivity: Type I -- Magnetic Susceptibility of Superconductors: Type I -- London's Penetration Depth -- Type-II Superconductors -- Microwave Surface Impedance -- Conduction through a Non-Superconducting Constriction -- Isotopic Spin Representation of Feynman Equations -- Problems -- Appendix 6.A -- References -- Solutions -- 7. Kramers-Kronig Equations -- Problems -- References -- Solutions -- 8. Electromagnetic Wave Propagation in Anisotropic Magneto-Dielectric Media -- Spinwave Dispersions for Semi-Infinite Medium -- Spinwave Dispersion at High k-Values -- The k = 0 Spinwave Limit -- Sphere -- Thin Films -- Needle -- Surface or Localized Spinwave Excitations -- Pure Electromagnetic Modes of Propagation: Semi-Infinite Medium -- Coupling of the Equation of Motion and Maxwell's Equations -- Normal Modes of Spinwave Excitations -- Magnetostatic Wave Excitations -- M Perpendicular to Film Plane -- H in the Film Plane -- Ferrite Bounded by Parallel Plates -- Problems -- Appendix 8.A -- Perpendicular Case -- In Plane Case -- References -- Solutions -- 9. Spin Surface Boundary Conditions -- A Quantitative Estimate of Magnetic Surface Energy -- Another Source of Surface Magnetic Energy -- Static Field Boundary Conditions -- Dynamic Field Boundary Conditions -- Applications of Boundary Conditions -- H T to the Film Plane -- H // to the Film Plane -- Electromagnetic Spin Boundary Conditions -- Problems -- Appendix 9.A -- Perpendicular Case -- In Plane Case -- References -- Solutions -- 10. Matrix Representation of Wave Propagation -- Matrix Representation of Wave Propagation in Single Layers -- (//) Case -- (T) Case -- The Incident Field -- Ferromagnetic Resonance in Composite Structures: No Exchange Coupling -- Ferromagnetic Resonance in Composite Structures: Exchange Coupling -- (T) Case -- Boundary Conditions -- (//) Case -- Boundary Conditions (// FMR) -- Problems -- Appendix 10.A -- Calculation of Transmission Line Parameters from [A] Matrix -- Microwave Response to Microwave Cavity Loaded with Magnetic Thin Film -- References -- Solutions.
Summary: Summary: Describes wave propagation in magneto-dielectric materials. This text considers the magnetic state of a magnetic ion, for example, at the atomic scale, and provides a mathematical link to wave propagation at the macroscopic scale. It presents qualitative and quantitative arguments to calculate magnetic parameters from first principles.
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Copy number Status Date due Barcode Item holds
E-Book E-Book EWU Library
E-book
Non-fiction 621.34 VIM 2011 (Browse shelf) Not for loan
Text Text EWU Library
Reserve Section
Non-fiction 621.34 VIM 2011 (Browse shelf) C-1 Not For Loan 24180
Text Text EWU Library
Circulation Section
Non-fiction 621.34 VIM 2011 (Browse shelf) C-2 Available 24181
Total holds: 0

Includes bibliographical references and index.

Table of contents 1. Review of Maxwell Equations and Units -- Maxwell Equations in MKS System of Units -- Major and Minor Magnetic Hysteresis Loops -- Tensor and Dyadic Quantities -- Maxwell Equations in Gaussian System of Units -- External, Surface, and Internal Electromagnetic Fields -- Problems -- Appendix 1.A. Conversion of Units -- References -- Solutions -- 2. Classical Principles of Magnetism -- Historical Background -- First Observation of Magnetic Resonance -- Definition of Magnetic Dipole Moment -- Magnetostatics of Magnetized Bodies -- Electrostatics of Electric Dipole Moment -- Relationship between B and H Fields -- General Definition of Magnetic Moment -- Classical Motion of the Magnetic Moment -- Problems -- Appendix 2.A -- References -- Solutions -- 3. Introduction to Magnetism -- Energy Levels and Wave Functions of Atoms -- Spin Motion -- Intra-Exchange Interactions -- Heisenberg Representation of Exchange Coupling -- Multiplet States -- Hund Rules -- Spin-Orbit Interaction -- Lande gj-Factor -- Effects of Magnetic Field on a Free Atom -- Crystal Field Effects on Magnetic Ions -- Superexchange Coupling between Magnetic Ions -- Double Superexchange Coupling -- Ferromagnetism in Magnetic Metals -- Problems -- Appendix 3.A. Matrix Representation of Quantum Mechanics -- References -- Solutions -- 4. Free Magnetic Energy -- Thermodynamics of Noninteracting Spins: Paramagnets -- Ferromagnetic Interaction in Solids -- Ferrimagnetic Ordering -- Spinwave Energy -- Effects of Thermal Spinwave Excitations -- Free Magnetic Energy -- Single Ion Model for Magnetic Anisotropy -- Pair Model -- Demagnetizing Field Contribution to Free Energy -- Numerical Examples -- Cubic Magnetic Anisotropy Energy -- Uniaxial Magnetic Anisotropy Energy -- Problems -- References -- Solutions -- 5. Phenomenological Theory -- Smit and Beljers Formulation -- Examples of Ferromagnetic Resonance -- Simple Model for Hysteresis -- General Formulation -- Connection between Free Energy and Internal Fields -- Static Field Equations -- Dynamic Equations of Motion -- Microwave Permeability -- Normal Modes -- Magnetic Relaxation -- Free Energy of Multi-Domains -- Problems -- References -- Solutions -- 6. Electrical Properties of Magneto-Dielectric Films -- Basic Difference between Electric and Magnetic Dipole Moments -- Electric Dipole Orientation in a Field -- Equation of Motion of Electrical Dipole Moment in a Solid -- Free Energy of Electrical Materials -- Magneto-Elastic Coupling -- Microwave Properties of Perfect Conductors -- Principles of Superconductivity: Type I -- Magnetic Susceptibility of Superconductors: Type I -- London's Penetration Depth -- Type-II Superconductors -- Microwave Surface Impedance -- Conduction through a Non-Superconducting Constriction -- Isotopic Spin Representation of Feynman Equations -- Problems -- Appendix 6.A -- References -- Solutions -- 7. Kramers-Kronig Equations -- Problems -- References -- Solutions -- 8. Electromagnetic Wave Propagation in Anisotropic Magneto-Dielectric Media -- Spinwave Dispersions for Semi-Infinite Medium -- Spinwave Dispersion at High k-Values -- The k = 0 Spinwave Limit -- Sphere -- Thin Films -- Needle -- Surface or Localized Spinwave Excitations -- Pure Electromagnetic Modes of Propagation: Semi-Infinite Medium -- Coupling of the Equation of Motion and Maxwell's Equations -- Normal Modes of Spinwave Excitations -- Magnetostatic Wave Excitations -- M Perpendicular to Film Plane -- H in the Film Plane -- Ferrite Bounded by Parallel Plates -- Problems -- Appendix 8.A -- Perpendicular Case -- In Plane Case -- References -- Solutions -- 9. Spin Surface Boundary Conditions -- A Quantitative Estimate of Magnetic Surface Energy -- Another Source of Surface Magnetic Energy -- Static Field Boundary Conditions -- Dynamic Field Boundary Conditions -- Applications of Boundary Conditions -- H T to the Film Plane -- H // to the Film Plane -- Electromagnetic Spin Boundary Conditions -- Problems -- Appendix 9.A -- Perpendicular Case -- In Plane Case -- References -- Solutions -- 10. Matrix Representation of Wave Propagation -- Matrix Representation of Wave Propagation in Single Layers -- (//) Case -- (T) Case -- The Incident Field -- Ferromagnetic Resonance in Composite Structures: No Exchange Coupling -- Ferromagnetic Resonance in Composite Structures: Exchange Coupling -- (T) Case -- Boundary Conditions -- (//) Case -- Boundary Conditions (// FMR) -- Problems -- Appendix 10.A -- Calculation of Transmission Line Parameters from [A] Matrix -- Microwave Response to Microwave Cavity Loaded with Magnetic Thin Film -- References -- Solutions.

Summary:
Describes wave propagation in magneto-dielectric materials. This text considers the magnetic state of a magnetic ion, for example, at the atomic scale, and provides a mathematical link to wave propagation at the macroscopic scale. It presents qualitative and quantitative arguments to calculate magnetic parameters from first principles.

Electrical & Electronic Engineering

There are no comments for this item.

Log in to your account to post a comment.

Library Home | Contacts | E-journals
Copyright @ 2011-2019 EWU Library
East West University