TY - BOOK AU - Molenberghs,Geert AU - Verbeke,Geert TI - Models for discrete longitudinal data T2 - Springer series in statistics SN - 0387251448 (hbk.) AV - QA278 .M65 2005 U1 - 519.53 22 PY - 2006/// CY - New York, London PB - Springer KW - Multivariate analysis KW - Longitudinal method N1 - Includes bibliographical references and index; TOC; Introduction -- Motivating studies -- Generalized linear models -- Linear mixed models for Gaussian longitudinal data -- Model families -- The strength of marginal models -- Likelihood-based marginal models -- Generalized estimating equations -- Pseudo-likelihood -- Fitting marginal models with SAS -- Conditional models -- Pseudo-likehood -- From subject-specific to random-effects models -- The generalized linear mixed model (GLMM) -- Fitting generalized linear mixed models with SAS -- Marginal versus random-effects models The analgesic trial -- Ordinal data -- The epilepsy data -- Non-linear models -- Pseudo-likelihood for a hierarchical model -- Random-effects models with serial correlation -- Non-Gaussian random effects -- Joint continuous and discrete responses -- High-dimensional joint models -- Missing data concepts -- Simple methods, direct likelihood, and WGEE -- Multiple imputation and the EM algorithm -- Selection models -- Pattern-mixture models -- Sensitivity analysis -- Incomplete data and SAS; AS N2 - Summary: The linear mixed model is the main parametric tool for the analysis of continuous longitudinal data. This book shows how the different approaches can be implemented within the SAS software package UR - http://www.loc.gov/catdir/enhancements/fy0662/2005923258-d.html UR - http://www.worldcat.org/title/models-for-discrete-longitudinal-data/oclc/547795141?referer=br&ht=edition UR - http://lib.ewubd.edu/ebook/6533 ER -