TY - BOOK AU - James,Gareth AU - Witten,Daniela AU - Hastie,Trevor AU - Tibshirani,Robert TI - An introduction to statistical learning: with applications in R T2 - Springer texts in statistics, SN - 9781461471370 AV - QA276 .I585 2013 U1 - 519.5 23 PY - 2017/// CY - New York PB - Springer KW - Mathematical statistics KW - Mathematical models KW - Problems, exercises, etc KW - R (Computer program language) KW - Statistics N1 - Includes index; TOC; Introduction.- Statistical Learning.- Linear Regression.- Classification.- Resampling Methods.- Linear Model Selection and Regularization.- Moving Beyond Linearity.- Tree-Based Methods.- Support Vector Machines.- Unsupervised Learning.- Index; CSE; CSE N2 - This book presents key modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, and clustering UR - https://www.worldcat.org/title/introduction-to-statistical-learning-with-applications-in-r/oclc/1014109834&referer=brief_results UR - http://lib.ewubd.edu/ebook/8930 ER -